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Hierarchical lattices that constitute spatially anisotropic systems are introduced. These lattices provide exact
solutions for hierarchical models and, simultaneously, approximate solutions for uniaxially or fully anisotropic
d=3 physical models. The global phase diagrams, with d=2 and d=1 to d=3 crossovers, are obtained for Ising
and XY magnetic models and percolation systems, including crossovers from algebraic order to true long-range
order.
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I. INTRODUCTION

Spatially anisotropic systems greatly enrich our experi-
ence of collective phenomena, as exemplified by high-Tc su-
perconducting materials, in which the couplings along one
direction are much weaker than those in the perpendicular
plane. Anisotropic systems are also intriguing from a concep-
tual point of view, since vastly different critical phenomena
are known to happen in different spatial dimensions,
whereas, between d-dimensional systems stacked along a
new direction, even the weakest coupling, while not affecting
the critical temperature, induces �d+1�-dimensional critical
behavior. Calculational results that yield the global phase
diagram of anisotropic systems and thus provide a unified
connected picture of the various anisotropic and isotropic
behaviors at different subdimensions and at the full dimen-
sion have been rare and mostly confined to d=2. In the
present study, we obtain global phase diagrams for a variety
of anisotropic d=3 systems: Ising magnetic, XY magnetic,
and percolation systems. Anisotropy along one direction
�uniaxial� and full anisotropy, in which the couplings along
each direction are different, are studied, yielding global
phase diagrams. We use hierarchical models, which yield
exact renormalization-group solutions �1–3�. Thus, the con-
struction of hierarchical lattices that incorporate correct di-
mensional reductions is an important step of the study. The
exact solutions of hierarchical models can simultaneously be
considered approximate position-space renormalization-
group solutions of models on naturally occurring lattices �1�.
The method developed in this study will be employed to
extend, from isotropic to anisotropic systems, the
renormalization-group solutions of the tJ and Hubbard mod-
els of electronic conduction �4–6�.

II. ANISOTROPIC HIERARCHICAL LATTICES

Hierarchical lattices are constructed by repeatedly self-
embedding a graph. These provide exactly solvable models,
with which complex problems can be studied and under-
stood. For example, frustrated �7�, spin-glass �8�, random-
bond �9� and random-field �10�, Schrödinger equation �11�,

lattice-vibration �12�, dynamic scaling �13�, aperiodic mag-
net �14�, complex phase diagram �15�, and directed-path �16�
systems, etc., have been solved on hierarchical lattices.

In this study, we construct anisotropic hierarchical lattices
by the parallel, mutual embeding of several graphs. In each
embedding step, b and bd, respectively, are the length and
volume rescaling factors. We illustrate the method by the
simplest case of the anisotropic d=2 lattice, before moving
on to the uniaxially or fully anisotropic d=3 lattices. The
parallel, mutual embeddings of the two graphs shown in Fig.
1 provide an anisotropic d=2 hierarchical lattice. If either of
the couplings �Kx ,Ky� is set to zero, the remaining coupling
constitutes a one-dimensional lattice. When the couplings are
of equal strength, Kx=Ky, the two directions, represented by
the two embedding sequences, are equivalent and the lattice
is isotropic d=2. This lattice will be referred to as A2.

It is thus seen that generally our requirements in the con-
struction of anisotropic hierarchical lattices are �1� the proper
reduction to the lower dimension when one �or more, see

FIG. 1. The parallel, mutual embeddings of these two graphs
provide an anisotropic d=2 hierarchical lattice. If either of the cou-
plings �Kx ,Ky� is set to zero, the remaining coupling constitutes a
one-dimensional lattice. When the couplings are of equal strength,
Kx=Ky, the two directions, represented by the two embedding se-
quences, are equivalent and the lattice is isotropic d=2. This lattice
will be referred to as A2.
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below� of the couplings is set to zero and �2� the restitution
of an isotropic lattice when the couplings are of equal
strength.

The parallel, mutual embeddings of the two graphs shown
in Fig. 2 provide a uniaxially anisotropic d=3 hierarchical
lattice. If the coupling Kz is set to zero, the coupling Kxy
constitutes an isotropic two-dimensional lattice. If the cou-
pling Kxy is set to zero, the coupling Kz constitutes a one-
dimensional lattice. When the couplings are of equal
strength, Kxy =Kz, the z direction, represented by the first
embedding sequence, and the x ,y directions, represented by

the second embedding sequence, are all equivalent and the
lattice is isotropic d=3. This lattice will be referred to as U3.
In Fig. 3, the parallel, mutual embeddings of the top graph
with either one of the following graphs also provide uniaxi-
ally anisotropic d=3 hierarchical lattices. If the last graph is
used, isotropy is not restored when Kxy =Kz; this lattice is
nevertheless included, for comparison, in our study. These
lattices, differentiated by the choice of the second embedding
graph, will be respectively referred to as U3a ,U3b ,U3c.

A fully anisotropic d=3 hierarchical lattice is provided in
Fig. 4 by each shown embedding in parallel with the two
embeddings obtained by permuting Kx �full line�, Ky
�dashed�, and Kz �dotted�. If any one of the couplings Ku is
set to zero, the remaining two couplings constitute an aniso-
tropic two-dimensional lattice. If any two of the couplings
are set to zero, the remaining coupling constitutes a one-
dimensional lattice. When the couplings are of equal
strength, Kx=Ky =Kz, the three directions, represented by the
three embedding sequences, are equivalent and the lattice is
isotropic d=3. These lattices will be referred to as A3a
and A3b.

The anisotropic systems that we study are located on the
anisotropic lattices constructed above. These hierarchical
models admit exact renormalization-group solutions, with re-
cursion relations obtained by decimations in direction oppo-
site to their construction direction. The exact solutions of
hierarchical models can simultaneously be considered ap-
proximate position-space renormalization-group solutions of
models on naturally occurring lattices. In fact, the recursion
relations obtained for the models below correspond to
Migdal-Kadanoff �17,18� approximate recursion relations,
which are hereby generalized to anisotropic systems.

FIG. 2. The parallel, mutual embeddings of these two graphs
provide a uniaxially anisotropic d=3 hierarchical lattice. If the cou-
pling Kz is set to zero, the coupling Kxy constitutes an isotropic
two-dimensional lattice. If the coupling Kxy is set to zero, the cou-
pling Kz constitutes a one-dimensional lattice. When the couplings
are of equal strength, Kxy =Kz, the z direction, represented by the
first embedding sequence, and the x ,y directions, represented by the
second embedding sequence, are all equivalent and the lattice is
isotropic d=3. This lattice will be referred to as U3.

FIG. 3. The parallel, mutual embeddings of the top graph with
either one of the following graphs provide uniaxially anisotropic
d=3 hierarchical lattices. If the last graph is used, isotropy is not
restored when Kxy =Kz. These lattices, differentiated by the choice
of the second embedding graph, will be respectively referred to as
U3a ,U3b ,U3c.

FIG. 4. Each embedding shown in this figure, in parallel with
the two embeddings obtained by permuting Kx �full line�, Ky

�dashed�, and Kz�dotted�, yields a fully anisotropic d=3 hierarchical
lattice. If any one the couplings Ku is set to zero, the remaining two
couplings constitute an anisotropic two-dimensional lattice. If any
two of the couplings are set to zero, the remaining coupling consti-
tutes a one-dimensional lattice. When the couplings are of equal
strength, Kx=Ky =Kz, the three directions, represented by the three
mutual embedding sequences, are equivalent and the lattice is iso-
tropic d=3. These lattices will be respectively referred to as A3a

and A3b.

ERBAȘ et al. PHYSICAL REVIEW E 72, 026129 �2005�

026129-2



III. ANISOTROPIC ISING MAGNETS

The Ising model is defined by the Hamiltonian

− �H = �
u

Ku�
�ij�u

sisj , �1�

where, at each lattice site i ,si= ±1, and �ij�u denotes summa-
tion over bonds of type u. The various decimations in the
models are composed of two elementary steps, K=Ku+Kv
for bonds in parallel and K=tanh−1�tanh Ku+tanh Kv� for
bonds in series, where K is the effective coupling of the
combined bonds.

The phase boundaries for the Ising model on the d=2
anisotropic hierarchical lattices A2 , A3a, and A3b �setting Kz
=0 in the latter two� are given in Fig. 5, along with the exact
result for the anisotropic square lattice �19�. The
renormalization-group flows are indicated on the phase
boundary of the hierarchical models. The fixed point occurs
at isotropy, Kx=Ky, to which the d=2 anisotropic critical
points flow, thereby sharing the same critical exponents.

The phase boundaries for the Ising model on the d=3
uniaxially anisotropic hierarchical lattices U3 , U3a , U3b ,
U3c , A3a, and A3b �setting Kx=Ky� are given in Fig. 6. The
exact phase transition points for the square �19� and cubic
�20� lattices are also shown. For each model, the phase tran-
sitions at d=1 �at infinite coupling� and d=2 cross over to
d=3 criticality, which is thus universal for all d=3 aniso-
tropic and the d=3 isotropic cases.

The phase boundary surface for the Ising model on the
d=3 fully anisotropic hierarchical lattice A3b is given in Fig.
7. The dashed lines on the planes are the exact d=2 solutions
for the square lattice �19�. Again, all points on the critical
surface of the d=3 fully anisotropic model flow onto the
fixed point located at isotropy, thereby sharing its critical
exponents. The critical exponents found for this model are

yT=0.69,yH=1.68 for d=2 �for the square lattice yT=1, yH
=1.875 �19�� and yT=0.92,yH=2.20 for d=3 �for the cubic
lattice yT=1.59,yH=2.50 �21,22��.

IV. ANISOTROPIC XY MAGNETS

The XY model is defined by the Hamiltonian

− �H = �
u

Ju�
�ij�u

si · s j = �
u

Ju�
�ij�u

cos��i − � j� , �2�

where at each lattice site i ,si is a unit vector confined to the
xy plane at angle �i to the x axis and �ij�u denotes summation

FIG. 5. The phase boundaries for the Ising model on the d=2
anisotropic hierarchical lattices A2 , A3a, and A3b �setting Kz=0� and
the exact result �19� for the anisotropic square lattice �s�. The ar-
rows and stars, respectively, indicate the renormalization-group
flows and fixed points.

FIG. 6. Phase boundaries for the Ising model on the d=3 uniaxi-
ally anisotropic hierarchical lattices U3 , U3a , U3b , U3c , A3a, and
A3b �setting Kx=Ky�. The exact phase transition points for the
square �19� and cubic �20� lattices are shown by the black circles.
For each model, the phase transitions at d=1 �at infinite coupling�
and d=2 cross over �as shown for A3a� to d=3 criticality, which is
thus universal for all d=3 anisotropic and the d=3 isotropic cases.
The d=2 fixed point of A3b is not marked by a star, since it coin-
cides with the square lattice exact transition point, marked by the
black circle on the horizontal axis.

FIG. 7. Phase boundary surface for the Ising model on the d
=3 fully anisotropic hierarchical lattice A3b. The dashed lines on the
planes are the exact d=2 solutions for the square lattice �19�.
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over bonds of type u. Under renormalization-group transfor-
mations, the coupling between nearest-neighbor sites takes
the general form of a function Vu��i−� j�. The various deci-
mations in the models are composed of two elementary
steps,

V = Vu + Vv,

V��i − �k� = ln�
0

2�

d� jexp�Vu��i − � j� + Vv�� j − �k�� , �3�

respectively for bonds in parallel and in series, where V is
the effective coupling of the combined bonds. In terms of
Fourier components,

fu�s� = �
0

2� d�

2�
eis�exp�Vu��� − Vu�0�� ,

exp�Vu��� − Vu�0�� = �
s

e−is�fu�s� , �4�

Eqs. �3� respectively are

FIG. 8. Phase boundaries for the XY model on the d=3 uniaxi-
ally anisotropic hierarchical lattices U3 , U3a , U3b, and U3c. The
exact phase transition points for the square �23� and cubic �24�
lattices are shown by the black circles. For each model, the phase
transitions at d=1 �at infinite coupling� and d=2 �onset of algebraic
order� cross over to d=3 criticality, which is thus universal for
all d=3 anisotropic and the d=3 isotropic cases. The onsets
of effective algebraic order in d=2 are marked, for models U3 ,
U3a with the open square and for models U3b , U3c with the full
square.

FIG. 9. Fixed potentials attracting the critical surface of the
d=3 XY model. For comparison, appropriately normalized Villain
potentials are also shown.

FIG. 10. Number of renormalization-group iterations necessary,
in the d=2 XY model, for the Villain potential parametrized by JV

to decay to a disordered sink with V���max−V���min�10−4. The
squares indicate the onset of effective algebraic order.

FIG. 11. The phase boundaries for percolation on the d=2 an-
isotropic hierarchical lattice �A2�. The renormalization-group flows
are indicated on the phase boundary of the hierarchical model. The
onset of percolation for the square lattice �29� is shown by the black
circle.
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f�s� = �
p

fu�p�fv�s − p� ,

f�s� = fu�s�fv�s� , �5�

in a form that is more conveniently followed in our calcula-
tions. The phase boundaries for the XY model on the d=3
uniaxially anisotropic hierarchical lattices U3 , U3a , U3b, and
U3c are given in Fig. 8. The exact phase transition points for
the square �23� and cubic �24� lattices are also shown.

In d=2, namely along the horizontal axis, above a critical
interaction strength marked by the squares on the figure, the
systems exhibit algebraic order �25–27�: The starting Hamil-
tonian �Eq. �2�� flows to a Villain potential �28�,

fV�s� = A exp�− s2/2JV� , �6�

exhibiting a fixed-line behavior parametrized by JV. This cor-
responds to a system without true long-range order, namely
with zero magnetization, but infinite correlation length and
algebraic order in which the correlations decay as a power
law. In d=3, true long-range order occurs: points in the fer-
romagnetic phase renormalize to a � function potential;
points on the phase boundaries renormalize to single true
fixed potential, shown in Fig. 9, differing from the Villain
potential as also seen on the figure. The behavior here for
d=2 is not true fixed-line behavior. After tens of thousands
of renormalization-group iterations �corresponding to a scale
change factor of 210 000�, the Villain potential decays �27�
to a disordered sink with V���max−V���min�10−4. The sharp
change in the necessary number of iterations, as seen in Fig.
10, indicates the onset of effective algebraic order.

As seen in Fig. 8, for each XY model, the phase transi-
tions at d=1 �at infinite coupling� and d=2 �onset of alge-
braic order� cross over to d=3 criticality, which is thus uni-
versal for all d=3 anisotropic and the d=3 isotropic cases.

V. ANISOTROPIC PERCOLATION

Anisotropic percolation is defined such that on each con-
nection of direction u, a bond exist with probability pu. The
various decimations in the models are composed of two el-
ementary steps, p= pupv+ pu�1− pv�+ pv�1− pu� for connec-

tions in parallel and p= pupv for connections in series, where
p is the effective connectedness probability of the combined
connections. The phase diagram for percolation on the d=2
anisotropic hierarchical lattice �A2� is given in Fig. 11. The
percolation fixed point occurs at isotropy, px= py, to which
the d=2 aniśotropic percolation onsets flow, thereby sharing
the same critical exponents. The phase boundaries for perco-
lation on the d=3 uniaxially anisotropic hierarchical lattices
U3 , U3a , U3b, and U3c are given in Fig. 12. The percolation
points for the cubic and square lattices are also shown �29�.
For each model, percolation onset at d=1 �at pz=1� and
d=2 cross over to d=3 percolation onset, which is thus uni-
versal for all d=3 anisotropic and the d=3 isotropic cases.
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